Nachklausur zur Vorlesung Lineare Algebra II

17. März 2015

Name: Matrikelnummer:

Studiengang:

Note:

Aufgabe	1	2	3	4	5	6	7	\sum
Punkte	4	4	2	2	4	4	4	24
Punkte erreicht								

Bemerkungen und Hinweise:

- Die Bearbeitungszeit beträgt 120 Minuten.
- Die Klausur ist mit 12 erreichten Punkten bestanden.
- Bitte schreiben Sie die Lösung jeder Aufgabe auf ein eigenes Blatt.
- Es sind keine Hilfsmittel zugelassen.
- Alle Aussagen und Antworten sind zu begründen.

Aufgabe 1: (1+1+1+1=4 Punkte)

- (i) Seien K ein Körper, V und W zwei K-Vektorräume und $f: V \to W$ eine lineare Abbildung. Geben Sie die Definitionen von V^* und f^* .
- (ii) Seien K ein Körper, V ein endlich erzeugter K-Vektorraum und $f \in$ $\operatorname{End}(V)$ ein Endomorphismus von V. Geben Sie die Definition des Minimalpolynoms von f.
- (iii) Seien K ein Körper, V ein endlich erzeugter K-Vektorraum und $f \in$ $\operatorname{End}(V)$ ein Endomorphismus von V. Geben Sie die Definition eines Eigenvektors von f. Sei $\lambda \in K$ ein Eigenwert von f. In welcher Beziehung stehen die algebraische Vielfachheit von λ und der Stabilitätsindex $s(f - \lambda \cdot id_V)$ des Endomorphismus $f - \lambda \cdot id_V$ von V?
- (iv) Sei V ein C-Vektorraum. Geben Sie die Definition eines Skalarproduktes von V.

Aufgabe 2: (3 + 1 = 4 Punkte) Betrachtet wird der Endomorphismus

$$f: \mathbb{C}^4 \to \mathbb{C}^4$$

 $(x_1, x_2, x_3, x_4) \mapsto (x_1 - x_3, x_1 + x_3, -x_1 + x_3, 2x_4).$

- (i) Bestimmen Sie eine Basis \mathcal{A} von \mathbb{C}^4 , so daß $M_{f,\mathcal{A},\mathcal{A}}$ eine Matrix in Jordanscher Normalform ist. Geben Sie die Matrix $M_{f,\mathcal{A},\mathcal{A}}$ an.
- (ii) Bestimmen Sie das Minimalpolynom von f.

Aufgabe 3: (2 Punkte)

Bestimmen Sie für die Matrix $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} \in M(3 \times 3, \mathbb{R})$ eine

Matrix $T \in O(3)$, so daß $T^{-1}AT$ eine Diagonalmatrix ist. (Hinweis: 0 und 3 sind die Eigenwerte von A).

Aufgabe 4: (2 Punkte)

Seien V ein \mathbb{R} -Vektorraum mit dim V=3 und $\mathcal{A}=(v_1,v_2,v_3)$ eine Basis von

$$V$$
. Sei $b: V \times V \to \mathbb{R}$ die Bilinearform von V mit $M_{b,\mathcal{A}} = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Begründen Sie, daß $\mathcal{B} := (v_2, v_1, v_1 - v_3)$ eine Basis von V ist und bestimmen Sie die Matrix $M_{b,\mathcal{B}}$.

Aufgabe 5: (4 Punkte)

Auf dem \mathbb{R} -Vektorraum \mathbb{R}^3 wird die symmetrische Bilinearform $b:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}$ mit

$$b((x_1, x_2, x_3), (y_1, y_2, y_3)) = -x_1y_1 - x_2y_2 - 2x_3y_3 + x_1y_3 + x_2y_3 + x_3y_1 + x_3y_2$$

betrachtet.

- (i) Bestimmen Sie die Matrix $M_{b,\mathcal{A}}$, wobei \mathcal{A} die Standardbasis von \mathbb{R}^3 ist.
- (ii) Bestimmen Sie Untervektorräume U_+, U_-, U_0 von \mathbb{R}^3 , so daß $\mathbb{R}^3 = U_+ \perp U_- \perp U_0$ (bezüglich b) und $b|U_+$ positiv definit, $b|U_-$ negativ definit und $b|U_0 = 0$. (Der Untervektorraum U_i ($i \in \{+, -, 0\}$) ist, sofern $U_i \neq \{0\}$, durch Angabe einer Basis von U_i anzugeben).
- (iii) Geben Sie eine Basis des Radikals von (\mathbb{R}^3, b) an.
- (iv) Zu dem Untervektorraum $U := \langle (1,1,0), (0,1,1) \rangle$ von \mathbb{R}^3 haben wir den Untervektorraum U^{\perp} von \mathbb{R}^3 (wobei U^{\perp} bezüglich b gebildet wird). Bestimmen Sie eine Basis von U^{\perp} .

Aufgabe 6: (1 + 3 = 4 Punkte)

Seien (V, \langle , \rangle) ein endlich erzeugter euklidischer Vektorraum und $f:(V, \langle , \rangle)$ $\to (V, \langle , \rangle)$ eine orthogonale lineare Abbildung. Sei U ein Untervektorraum von V. Zeigen Sie ausgehend von der Definitionseigenschaft einer orthogonalen linearen Abbildung, daß die folgenden Aussagen gelten.

- (i) f ist injektiv.
- (ii) Ist U f-invariant, so ist auch U^{\perp} f-invariant.

Aufgabe 7: (2 + 2 = 4 Punkte)

- (i) Geben Sie die Menge aller unitären Matrizen $A \in M(3 \times 3, \mathbb{C})$ an, die $-i \in \mathbb{C}$ als einzigen Eigenwert haben.
- (ii) Sei $A \in M(3 \times 3, \mathbb{C})$ unitär und eine obere Dreiecksmatrix. Zeigen Sie, daß A eine Diagonalmatrix ist.